Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

# Authors: 

#   John Dennis <jdennis@redhat.com> 

# 

# Copyright (C) 2011  Red Hat 

# see file 'COPYING' for use and warranty information 

# 

# This program is free software; you can redistribute it and/or modify 

# it under the terms of the GNU General Public License as published by 

# the Free Software Foundation, either version 3 of the License, or 

# (at your option) any later version. 

# 

# This program is distributed in the hope that it will be useful, 

# but WITHOUT ANY WARRANTY; without even the implied warranty of 

# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 

# GNU General Public License for more details. 

# 

# You should have received a copy of the GNU General Public License 

# along with this program.  If not, see <http://www.gnu.org/licenses/>. 

 

''' 

 

Goal 

---- 

 

To allow a Python programmer the ability to operate on DN's 

(Distinguished Names) in a simple intuitive manner supporting all the 

Pythonic mechanisms for manipulating objects such that the simple 

majority case remains simple with simple code, yet the corner cases 

are fully supported. With the result both simple and complex cases are 

100% correct. 

 

This is achieved with a fair of amount of syntax sugar which is best 

described as "Do What I Mean" (i.e. DWIM). The class implementations 

take simple expressions and internally convert them to their more 

complex full definitions hiding much of the complexity from the 

programmer. 

 

Anatomy of a DN 

--------------- 

 

Some definitions: 

 

AVA 

    An AVA is an Attribute Value Assertion. In more simple terms it's 

    an attribute value pair typically expressed as attr=value 

    (e.g. cn=Bob). Both the attr and value in an AVA when expressed in 

    a string representation are subject to encoding rules. 

 

RDN 

    A RDN is a Relative Distinguished Name. A RDN is a non-empty set of 

    AVA's. In the common case a RDN is single valued consisting of 1 

    AVA (e.g. cn=Bob). But a RDN may be multi-valued consisting of 

    more than one AVA. Because the RDN is a set of AVA's the AVA's are 

    unordered when they appear in a multi-valued RDN. In the string 

    representation of a RDN AVA's are separated by the plus sign (+). 

 

DN 

    A DN is a ordered sequence of 1 or more RDN's. In the string 

    representation of a DN each RDN is separated by a comma (,) 

 

Thus a DN is: 

 

Sequence of set of <encoded attr, encoded value> pairs 

 

The following are valid DN's 

 

# 1 RDN with 1 AVA (e.g. cn=Bob) 

RDN(AVA) 

 

# 2 RDN's each with 1 AVA (e.g. cn=Bob,dc=redhat.com) 

RDN(AVA),RDN(AVA) 

 

# 2 RDN's the first RDN is multi-valued with 2 AVA's 

# the second RDN is singled valued with 1 AVA 

# (e.g. cn=Bob+ou=people,dc=redhat.com 

RDN({AVA,AVA}),RDN(AVA) 

 

Common programming mistakes 

--------------------------- 

 

DN's present a pernicious problem for programmers. They appear to have 

a very simple string format in the majority case, a sequence of 

attr=value pairs separated by commas. For example: 

 

dn='cn=Bob,ou=people,dc=redhat,dc=com' 

 

As such there is a tendency to believe you can form DN's by simple 

string manipulations such as: 

 

dn='%s=%s' % ('cn','Bob') + ',ou=people,dc=redhat,dc=com' 

 

Or to extract a attr & value by searching the string, for example: 

 

attr=dn[0 : dn.find('=')] 

value=dn[dn.find('=')+1 : dn.find(',')] 

 

Or compare a value returned by an LDAP query to a known value: 

 

if value == 'Bob' 

 

All of these simple coding assumptions are WRONG and will FAIL when a 

DN is not one of the simple DN's (simple DN's are probably the 95% of 

all DN's). This is what makes DN handling pernicious. What works in 

95% of the cases and is simple, fails for the 5% of DN's which are not 

simple. 

 

Examples of where the simple assumptions fail are: 

 

* A RDN may be multi-valued 

 

* A multi-valued RDN has no ordering on it's components 

 

* Attr's and values must be UTF-8 encoded 

 

* String representations of AVA's, RDN's and DN's must be completely UTF-8 

 

* An attr or value may have reserved characters which must be escaped. 

 

* Whitespace needs special handling 

 

To complicate matters a bit more the RFC for the string representation 

of DN's (RFC 4514) permits a variety of different syntax's each of 

which can evaluate to exactly the same DN but have different string 

representations. For example, the attr "r,w" which contains a reserved 

character (the comma) can be encoded as a string in these different 

ways: 

 

'r\,w'          # backslash escape 

'r\2cw'         # hexadecimal ascii escape 

'#722C77'       # binary encoded 

 

It should be clear a DN string may NOT be a simple string, rather a DN 

string is ENCODED. For simple strings the encoding of the DN is 

identical to the simple string value (this common case leads to 

erroneous assumptions and bugs because it does not account for 

encodings). 

 

The openldap library we use at the client level uses the backslash 

escape form. The LDAP server we use uses the hexadecimal ascii escape 

form. Thus 'r,w' appears as 'r\,w' when sent from the client to the 

LDAP server as part of a DN. But when it's returned as a DN from the 

server in an LDAP search it's returned as 'r\2cw'. Any attempt to 

compare 'r\,w' to 'r\2cw' for equality will fail despite the fact they 

are indeed equal once decoded. Such a test fails because you're 

comparing two different encodings of the same value. In MIME you 

wouldn't expect the base64 encoding of a string to be equal to the 

same string encoded as quoted-printable would you? 

 

When you are comparing attrs or values which are part of a DN and 

other string you MUST: 

 

* Know if either of the strings have been encoded and make sure you're 

  comparing only decoded components component-wise. 

 

* Extract the component from the DN and decode it. You CANNOT decode 

  the entire DN as a string and operate on it. Why? Consider a value 

  with a comma embedded in it. For example: 

 

  cn=r\2cw,cn=privilege 

 

  Is a DN with 2 RDN components: cn=r,w followed by "cn=privilege" 

 

  But if you decode the entire DN string as a whole you would get: 

 

  cn=r,w,cn=privilege 

 

  Which is a malformed DN with 3 RDN's, the 2nd RDN is invalid. 

 

* Determine if a RDN is multi-valued, if so you must account 

  for the fact each AVA component in the multi-valued RDN can appear 

  in any order and still be equivalent. For example the following two 

  RDN's are equal: 

 

  cn=Bob+ou=people 

  ou=people+cn=Bob 

 

  In addition each AVA (cn=Bob & ou=people) needs to be 

  INDEPENDENTLY decoded prior to comparing the unordered set of AVA's 

  in the multi-valued RDN. 

 

If you are trying to form a new DN or RDN from a raw string you cannot 

simply do string concatenation or string formatting unless you ESCAPE 

the components independently prior to concatenation, for example: 

 

  base = 'dc=redhat,dc=com' 

  value = 'r,w' 

  dn = 'cn=%s,%s' % (value, base) 

 

Will result in the malformed DN 'cn=r,w,dc=redhat,dc=com' 

 

Syntax Sugar 

------------ 

 

The majority of DN's have a simple string form: 

 

attr=value,attr=value 

 

We want the programmer to be able to create DN's, compare them, and 

operate on their components as simply and concisely as possible so 

the classes are implemented to provide a lot of syntax sugar. 

 

The classes automatically handle UTF-8 <-> Unicode conversions. Every 

attr and value which is returned from a class will be Unicode. Every 

attr and value assigned into an object will be promoted to 

Unicode. All string representations in RFC 4514 format will be UTF-8 

and properly escaped. Thus at the "user" or "API" level every string 

is Unicode with the single exception that the str() method returns RFC 

compliant escaped UTF-8. 

 

RDN's are assumed to be single-valued. If you need a multi-valued RDN 

(an exception) you must explicitly create a multi-valued RDN. 

 

Thus DN's are assumed to be a sequence of attr, value pairs, which is 

equivalent to a sequence of RDN's. The attr and value in the pair MUST 

be strings. 

 

The DN and RDN constructors take a sequence, the constructor parses 

the sequence to find items it knows about. 

 

The DN constructor will accept in it's sequence: 

  * tuple of 2 strings, converting it to an RDN 

  * list of 2 strings, converting it to an RDN 

  * a RDN object 

  * a DN syntax string (e.g. 'cn=Bob,dc=redhat.com') 

 

Note DN syntax strings should be avoided if possible when passing to a 

constructor because they run afoul of the problems outlined above 

which the DN, RDN & AVA classes are meant to overcome. But sometimes a 

DN syntax string is all you have to work with. DN strings which come 

from a LDAP library or server will be properly formed and it's safe to 

use those. However DN strings provided via user input should be 

treated suspiciously as they may be improperly formed. You can test 

for this by passing the string to the DN constructor and see if it 

throws an exception. 

 

The sequence passed to the DN constructor takes each item in order, 

produces one or more RDN's from it and appends those RDN in order to 

its internal RDN sequence. 

 

For example: 

 

   DN(('cn', 'Bob'), ('dc', 'redhat.com')) 

 

This is equivalent to the DN string: 

 

    cn=Bob,dc=redhat.com 

 

And is exactly equal to: 

 

    DN(RDN(AVA('cn','Bob')),RDN(AVA('dc','redhat.com'))) 

 

The following are alternative syntax's which are all exactly 

equivalent to the above example. 

 

   DN(['cn', 'Bob'], ['dc', 'redhat.com']) 

   DN(RDN('cn', 'Bob'), RDN('dc', 'redhat.com')) 

 

You can provide a properly escaped string representation. 

 

   DN('cn=Bob,dc=redhat.com') 

 

You can mix and match any of the forms in the constructor parameter 

list. 

 

   DN(('cn', 'Bob'), 'dc=redhat.com') 

   DN(('cn', 'Bob'), RDN('dc', 'redhat.com')) 

 

AVA's have an attr and value property, thus if you have an AVA 

 

# Get the attr and value 

ava.attr  -> u'cn' 

ava.value -> u'Bob' 

 

# Set the attr and value 

ava.attr  = 'cn' 

ava.value = 'Bob' 

 

Since RDN's are assumed to be single valued, exactly the same 

behavior applies to an RDN. If the RDN is multi-valued then the attr 

property returns the attr of the first AVA, likewise for the value. 

 

# Get the attr and value 

rdn.attr  -> u'cn' 

rdn.value -> u'Bob' 

 

# Set the attr and value 

rdn.attr  = 'cn' 

rdn.value = 'Bob' 

 

Also RDN's can be indexed by name or position (see the RDN class doc 

for details). 

 

rdn['cn'] -> u'Bob' 

rdn[0] -> AVA('cn', 'Bob') 

 

A DN is a sequence of RDN's, as such any of Python's container 

operators can be applied to a DN in a intuitive way. 

 

# How many RDN's in a DN? 

len(dn) 

 

# WARNING, this a count of RDN's not how characters there are in the 

# string representation the dn, instead that would be: 

len(str(dn)) 

 

# Iterate over each RDN in a DN 

for rdn in dn: 

 

# Get the first RDN in a DN 

dn[0] -> RDN('cn', 'Bob') 

 

# Get the value of the first RDN in a DN 

dn[0].value -> u'Bob' 

 

# Get the value of the first RDN by indexing by attr name 

dn['cn'] -> u'Bob' 

 

# WARNING, when a string is used as an index key the FIRST RDN's value 

# in the sequence whose attr matches the key is returned. Thus if you 

# have a DN like this "cn=foo,cn=bar" then dn['cn'] will always return 

# 'foo' even though there is another attr with the name 'cn'. This is 

# almost always what the programmer wants. See the class doc for how 

# you can override this default behavior and get a list of every value 

# whose attr matches the key. 

 

# Set the first RDN in the DN (all are equivalent) 

dn[0] = ('cn', 'Bob') 

dn[0] = ['cn', 'Bob'] 

dn[0] = RDN('cn', 'Bob') 

 

dn[0].attr = 'cn' 

dn[0].value = 'Bob' 

 

# Get the first two RDN's using slices 

dn[0:2] 

 

# Get the last two RDN's using slices 

dn[-2:] 

 

# Get a list of all RDN's using slices 

dn[:] 

 

# Set the 2nd and 3rd RDN using slices (all are equivalent) 

dn[1:3] = ('cn', 'Bob), ('dc', 'redhat.com') 

dn[1:3] = RDN('cn', 'Bob), RDN('dc', 'redhat.com') 

 

String representations and escapes: 

 

# To get an RFC compliant string representation of a DN, RDN or AVA 

# simply call str() on it or evaluate it in a string context. 

str(dn) -> 'cn=Bob,dc=redhat.com' 

 

# When working with attr's and values you do not have to worry about 

# escapes, simply use the raw unescaped string in a natural fashion. 

 

rdn = RDN('cn', 'r,w') 

 

# Thus: 

rdn.value == 'r,w' -> True 

 

# But: 

str(rdn) == 'cn=r,w' -> False 

# Because: 

str(rdn) -> 'cn=r\2cw' or 'cn='r\,w' # depending on the underlying LDAP library 

 

Equality and Comparing: 

 

# All DN's, RDN's and AVA's support equality testing in an intuitive 

# manner. 

dn1 = DN(('cn', 'Bob')) 

dn2 = DN(RDN('cn', 'Bob')) 

dn1 == dn2 -> True 

dn1[0] == dn2[0] -> True 

dn1[0].value = 'Bobby' 

dn1 == dn2 -> False 

 

DN objects implement startswith(), endswith() and the "in" membership 

operator. You may pass a DN or RDN object to these. Examples: 

 

if dn.endswith(base_dn): 

if dn.startswith(rdn1): 

if container_dn in dn: 

 

# See the class doc for how DN's, RDN's and AVA's compare 

# (e.g. cmp()). The general rule is for objects supporting multiple 

# values first their lengths are compared, then if the lengths match 

# the respective components of each are pair-wise compared until one 

# is discovered to be  non-equal. The comparision is case insensitive. 

 

Cloning (Object Copy): 

 

All the class types are capable of cloning by passing an object of the 

same type (or subclass) to the constructor. The new object is a copy 

of the object passed as input to the constructor. One place this is 

useful is when you want to coerce between immutable and mutable 

versions in order to modify an object. 

 

Concatenation, In-Place Addition, Insertion: 

 

# DN's and RDN's can be concatenated. 

# Return a new DN by appending the RDN's of dn2 to dn1 

dn3 = dn1 + dn2 

 

# Append a RDN to DN's RDN sequence (all are equivalent) 

dn += ('cn', 'Bob') 

dn += RDN('cn', 'Bob') 

 

# Append a DN to an existing DN 

dn1 += dn2 

 

# Prepend a RDN to an existing DN 

dn1.insert(0, RDN('cn', 'Bob')) 

 

Finally see the unittest for a more complete set of ways you can 

manipulate these objects. 

 

Mutability 

---------- 

 

Python makes a clear distinction between mutable and immutable 

objects. Examples of immutable Python objects are strings, integers 

and floats. Examples of mutable Python objects are lists, dicts, and 

sets. Immutable objects cannot be modified, mutable objects can be 

modified. An object's mutability affects how the object behaves when 

passed to a function or method, this is because it's the object's 

reference which is always passed, thus immutable objects behave as if 

it were "call by value" and mutable objects behave as if it were "call 

by reference" (mutable objects can be modifed inside the 

function/method and that modification will be visible to the 

caller. On object's mutability also affects how an object will behave 

when used as a key in a dict or as a member of a set. 

 

The following discussion applies equally to AVA, RDN and DN object 

class variants. 

 

The AVA, RDN and DN classes have both immutable and mutable 

variants. The base classes (AVA, RDN, DN) are immutable. Each of the 

immutable base classes have a mutable subclass whose name begins with 

'Editable'. Thus the DN class is immutable, instances of that class 

cannot be modified, there is a mutable class EditableDN derived from 

DN whose instances can be modified. The primary difference between the 

immutable and mutable variants is: 

 

* Immutable variants are preferred. 

 

* Mutable variants are exactly identical in behavior to their 

  immutable parent class (except for supporting assignment, etc.) 

 

* Immutable objects that test as equal will be the same as dict keys 

  and set members even if they are different objects. Mutable variants 

  are not hashable and thus cannot be used as a dict key nor inserted 

  into a set. 

 

* Only mutable variants support modification via assignment, insert or 

  in-place addition (e.g. +=). 

 

* In-place addtion (e.g. +=) works for both immutable and mutable 

  variants. The distinction is for immutable objects the lhs is 

  replaced with a new immutable result while a mutable object will be 

  modfied in place and lhs object remains the same object. 

 

It is trival to coerce between an mutable and immutable AVA, RDN and 

DN types. These classes can clone their objects by passing an object 

of the same type to the constructor. For example: 

 

  dn1 = DN(('cn', 'Bob')) # dn1 is immutable 

  dn2 = EditableDN(dn1)   # dn2 is mutable copy of dn1, 

                          # equal to dn1 until it's modified 

 

  and visa-versa 

 

  dn1 = EditableDN(('cn', 'Bob')) # dn1 is mutable 

  dn2 = DN(dn1)                   # dn2 is immutable copy of dn1, equal to dn1 

 

''' 

 

from ldap.dn import str2dn, dn2str 

from ldap import DECODING_ERROR 

import sys 

 

__all__ = ['AVA', 'EditableAVA', 'RDN', 'EditableRDN', 'DN', 'EditableDN'] 

 

def _adjust_indices(start, end, length): 

    'helper to fixup start/end slice values' 

 

    if end > length: 

        end = length 

    elif end < 0: 

        end += length 

        if end < 0: 

            end = 0 

 

    if start < 0: 

        start += length 

        if start < 0: 

            start = 0 

 

    return start, end 

 

class AVA(object): 

    ''' 

    AVA(arg0, ...) 

 

    An AVA is an LDAP Attribute Value Assertion. It is convenient to think of 

    AVA's as a <attr,value> pair. AVA's are members of RDN's (Relative 

    Distinguished Name). 

 

    The AVA constructor is passed a sequence of args and a set of 

    keyword parameters used for configuration. 

 

    The arg sequence may be: 

 

    1) With 2 arguments, the first argument will be the attr, the 2nd 

    the value. Each argument must be scalar convertable to unicode. 

 

    2) With a sigle list or tuple argument containing exactly 2 items. 

    Each item must be scalar convertable to unicode. 

 

    3) With a single string (or unicode) argument, in this case the string will 

    be interpretted using the DN syntax described in RFC 4514 to yield a AVA 

    <attr,value> pair. The parsing recognizes the DN syntax escaping rules. 

 

    For example: 

 

    ava = AVA('cn', 'Bob')      # case 1: two strings 

    ava = AVA(('cn', 'Bob'))    # case 2: 2-valued tuple 

    ava = AVA(['cn', 'Bob'])    # case 2: 2-valued list 

    ava = AVA('cn=Bob')         # case 3: DN syntax 

 

    AVA object have two properties for accessing their data: 

 

    attr:  the attribute name, cn in our exmaple 

    value: the attribute's value, Bob in our example 

 

    When attr and value are returned they will always be unicode. When 

    attr or value are set they will be promoted to unicode. 

 

    AVA objects support indexing by name, e.g. 

 

    ava['cn'] 

 

    returns the value (Bob in our example). If the index does key does not match 

    the attr then a KeyError will be raised. 

 

    AVA objects support equality testing and comparsion (e.g. cmp()). When they 

    are compared the attr is compared first, if the 2 attr's are equal then the 

    values are compared. The comparision is case insensitive (because attr's map 

    to numeric OID's and their values derive from from the 'name' atribute type 

    (OID 2.5.4.41) whose EQUALITY MATCH RULE is caseIgnoreMatch. 

 

    The str method of an AVA returns the string representation in RFC 4514 DN 

    syntax with proper escaping. 

    ''' 

    is_mutable = False 

    flags = 0 

 

    def __init__(self, *args, **kwds): 

        if len(args) == 1: 

            arg = args[0] 

            if isinstance(arg, AVA): 

                ava = (arg.attr, arg.value) 

            elif isinstance(arg, basestring): 

                try: 

                    rdns = str2dn(arg.encode('utf-8')) 

                except DECODING_ERROR: 

                    raise ValueError("malformed AVA string = \"%s\"" % arg) 

                if len(rdns) != 1: 

                    raise ValueError("multiple RDN's specified by \"%s\"" % (arg)) 

                rdn = rdns[0] 

                if len(rdn) != 1: 

                    raise ValueError("multiple AVA's specified by \"%s\"" % (arg)) 

                ava = rdn[0] 

            elif isinstance(arg, (tuple, list)): 

                ava = arg 

                if len(ava) != 2: 

                    raise ValueError("tuple or list must be 2-valued, not \"%s\"" % (ava)) 

            else: 

                raise TypeError("with 1 argument, argument must be str,unicode,tuple or list, got %s instead" % \ 

                                arg.__class__.__name__) 

 

            attr  = ava[0] 

            value = ava[1] 

        elif len(args) == 2: 

            attr  = args[0] 

            value = args[1] 

        else: 

            raise TypeError("takes 1 or 2 arguments (%d given)" % (len(args))) 

 

        self._set_attr(attr) 

        self._set_value(value) 

 

    def _get_attr(self): 

        return self._attr_unicode 

 

    def _set_attr(self, new_attr): 

        # Scalars only 

        if isinstance(new_attr, (tuple, list)): 

            raise TypeError("attr must be scalar, got %s" % type(new_attr)) 

 

        try: 

            if isinstance(new_attr, unicode): 

                self._attr_unicode = new_attr 

            elif isinstance(new_attr, str): 

                self._attr_unicode = new_attr.decode('utf-8') 

            else: 

                self._attr_unicode = unicode(new_attr) 

        except Exception, e: 

            raise ValueError('unable to convert attr "%s" to unicode: %s' % (new_attr, e)) 

 

    attr  = property(_get_attr) 

 

    def _get_value(self): 

        return self._value_unicode 

 

    def _set_value(self, new_value): 

        # Scalars only 

        if isinstance(new_value, (tuple, list)): 

            raise TypeError("value must be scalar, got %s" % type(new_value)) 

 

        try: 

            if isinstance(new_value, unicode): 

                self._value_unicode  = new_value 

            elif isinstance(new_value, str): 

                self._value_unicode  = new_value.decode('utf-8') 

            else: 

                self._value_unicode  = unicode(new_value) 

        except Exception, e: 

            raise ValueError('unable to convert value "%s" to unicode: %s' % (new_value, e)) 

 

    value = property(_get_value) 

 

    def _to_openldap(self): 

        return [[(self._attr_unicode.encode('utf-8'), self._value_unicode.encode('utf-8'), self.flags)]] 

 

    def __str__(self): 

        return dn2str(self._to_openldap()) 

 

    def __repr__(self): 

        return "%s.%s('%s')" % (self.__module__, self.__class__.__name__, self.__str__()) 

 

    def __getitem__(self, key): 

        if isinstance(key, basestring): 

            if key == self._attr_unicode: 

                return self._value_unicode 

            raise KeyError("\"%s\" not found in %s" % (key, self.__str__())) 

        else: 

            raise TypeError("unsupported type for AVA indexing, must be basestring; not %s" % \ 

                                (key.__class__.__name__)) 

 

    def __hash__(self): 

        # Hash is computed from AVA's string representation because it's immutable 

        return hash(str(self)) 

 

    def __eq__(self, other): 

        ''' 

        The attr comparison is case insensitive because attr is 

        really an LDAP attribute type which means it's specified with 

        an OID (dotted number) and not a string. Since OID's are 

        numeric the human readable name which maps to the OID is not 

        significant in case. 

 

        The value comparison is also case insensitive because the all 

        attribute types used in a DN are derived from the 'name' 

        atribute type (OID 2.5.4.41) whose EQUALITY MATCH RULE is 

        caseIgnoreMatch. 

        ''' 

        # Try coercing string to AVA, if successful compare to coerced object 

        if isinstance(other, basestring): 

            try: 

                other_ava = AVA(other) 

                return self.__eq__(other_ava) 

            except Exception: 

                return False 

 

        # If it's not an AVA it can't be equal 

        if not isinstance(other, AVA): 

            return False 

 

        # Perform comparision between objects of same type 

        return self._attr_unicode.lower() == other.attr.lower() and \ 

            self._value_unicode.lower() == other.value.lower() 

 

    def __ne__(self, other): 

        return not self.__eq__(other) 

 

    def __cmp__(self, other): 

        'comparision is case insensitive, see __eq__ doc for explanation' 

 

        if not isinstance(other, AVA): 

            raise TypeError("expected AVA but got %s" % (other.__class__.__name__)) 

 

        result = cmp(self._attr_unicode.lower(), other.attr.lower()) 

        if result != 0: 

            return result 

        result = cmp(self._value_unicode.lower(), other.value.lower()) 

        return result 

 

class EditableAVA(AVA): 

    ''' 

    Exactly identical to the AVA class except 

 

    * Hash value is based on object identity, not object 

      value. Objects that test as equal will be non-unique when 

      used as a dict key or member of a set. 

 

    * The attr and value properties may be modified after object creation. 

 

    ''' 

    is_mutable = True 

    __hash__ = None 

 

    attr  = property(AVA._get_attr, AVA._set_attr) 

    value = property(AVA._get_value, AVA._set_value) 

 

 

 

class RDN(object): 

    ''' 

    RDN(arg0, ...) 

 

    An RDN is a LDAP Relative Distinguished Name. RDN's are members of DN's 

    (Distinguished Name). An RDN contains 1 or more AVA's. If the RDN contains 

    more than one AVA it is said to be a multi-valued RDN. When an RDN is 

    multi-valued the AVA's are unorderd comprising a set. However this 

    implementation orders the AVA's according to the AVA comparison function to 

    make equality and comparison testing easier. Think of this a canonical 

    normalization (however LDAP does not impose any ordering on multiple AVA's 

    within an RDN). Single valued RDN's are the norm and thus the RDN 

    constructor has simple syntax for them. 

 

    The RDN constructor is passed a sequence of args and a set of 

    keyword parameters used for configuration. 

 

    The constructor iterates though the sequence and adds AVA's to the RDN. 

 

    The arg sequence may be: 

 

    * A 2-valued tuple or list denotes the <attr,value> pair of an AVA. The 

    first member is the attr and the second member is the value, both members 

    must be strings (or unicode). The tuple or list is passed to the AVA 

    constructor and the resulting AVA is added to the RDN. Multiple tuples or 

    lists may appear in the argument list, each adds one additional AVA to the 

    RDN. 

 

    * A single string (or unicode) argument, in this case the string will 

    be interpretted using the DN syntax described in RFC 4514 to yield one or 

    more AVA <attr,value> pairs. The parsing recognizes the DN syntax escaping 

    rules. 

 

    * A AVA object, the AVA will be copied into the new RDN respecting 

      the constructors keyword configuration parameters. 

 

    * A RDN object, the AVA's in the RDN are copied into the new RDN 

      respecting the constructors keyword configuration parameters. 

 

    Single AVA Examples: 

 

    RDN(('cn', 'Bob'))                  # tuple yields 1 AVA 

    RDN('cn=Bob')                       # DN syntax with 1 AVA 

    RDN(AVA('cn', 'Bob'))               # AVA object adds 1 AVA 

 

    Multiple AVA Examples: 

 

    RDN(('cn', 'Bob'),('ou', 'people')) # 2 tuples yields 2 AVA's 

    RDN('cn=Bob+ou=people')             # DN syntax with 2 AVA's 

    RDN(AVA('cn', 'Bob'),AVA('ou', 'people')) # 2 AVA objects adds 2 AVA's 

    RDN(('cn', 'Bob'), 'ou=people')     # 2 args, 1st tuple forms 1 AVA, 

                                        # 2nd DN syntax string adds 1 AVA, 

                                        # 2 AVA's in total 

 

    Note: The RHS of a slice assignment is interpreted exactly in the 

    same manner as the constructor argument list (see above examples). 

 

    RDN objects support iteration over their AVA members. You can iterate all 

    AVA members via any Python iteration syntax. RDN objects support full Python 

    indexing using bracket [] notation. Examples: 

 

    len(rdn)            # return the number of AVA's 

    rdn[0]              # indexing the first AVA 

    rdn['cn']           # index by AVA attr, returns AVA value 

    for ava in rdn:     # iterate over each AVA 

    rdn[:]              # a slice, in this case a copy of each AVA 

 

    WARNING: When indexing by attr (e.g. rdn['cn']) there is a possibility more 

    than one AVA has the same attr name as the index key. The default behavior 

    is to return the value of the first AVA whose attr matches the index 

    key. 

 

    RDN objects support the AVA attr and value properties as another programmer 

    convenience because the vast majority of RDN's are single valued. The attr 

    and value properties return the attr and value properties of the first AVA 

    in the RDN, for example: 

 

    rdn = RDN(('cn', 'Bob')) # rdn has 1 AVA whose attr == 'cn' and value == 'Bob' 

    len(rdn) -> 1 

    rdn.attr -> u'cn'      # exactly equivalent to rdn[0].attr 

    rdn.value -> u'Bob'    # exactly equivalent to rdn[0].value 

 

    When attr and value are returned they will always be unicode. When 

    attr or value are set they will be promoted to unicode. 

 

    If an RDN is multi-valued the attr and value properties still return only 

    the first AVA's properties, programmer beware! Recall the AVA's in the RDN 

    are sorted according the to AVA collating semantics. 

 

    RDN objects support equality testing and comparision. See AVA for the 

    definition of the comparision method. 

 

    RDN objects support concatenation and addition with other RDN's or AVA's 

 

    rdn1 + rdn2 # yields a new RDN object with the contents of each RDN. 

    rdn1 + ava1 # yields a new RDN object with the contents of rdn1 and ava1 

 

    RDN objects can add AVA's objects via in-place addition. 

 

    rdn1 += rdn2 # rdn1 now contains the sum of rdn1 and rdn2 

    rdn1 += ava1 # rdn1 has ava1 added to it. 

 

    The str method of an RDN returns the string representation in RFC 4514 DN 

    syntax with proper escaping. 

    ''' 

 

    is_mutable = False 

    flags = 0 

    AVA_type = AVA 

 

    def __init__(self, *args, **kwds): 

        self.avas = self._avas_from_sequence(args) 

        self.avas.sort() 

 

    def _ava_from_value(self, value): 

        if isinstance(value, AVA): 

            return self.AVA_type(value.attr, value.value) 

        elif isinstance(value, RDN): 

            avas = [] 

            for ava in value.avas: 

                avas.append(self.AVA_type(ava.attr, ava.value)) 

            if len(avas) == 1: 

                return avas[0] 

            else: 

                return avas 

        elif isinstance(value, basestring): 

            try: 

                rdns = str2dn(value.encode('utf-8')) 

                if len(rdns) != 1: 

                    raise ValueError("multiple RDN's specified by \"%s\"" % (value)) 

                rdn = rdns[0] 

                if len(rdn) == 1: 

                    return self.AVA_type(rdn[0][0], rdn[0][1]) 

                else: 

                    avas = [] 

                    for ava_tuple in rdn: 

                        avas.append(self.AVA_type(ava_tuple[0], ava_tuple[1])) 

                    return avas 

            except DECODING_ERROR: 

                raise ValueError("malformed RDN string = \"%s\"" % value) 

        elif isinstance(value, (tuple, list)): 

            if len(value) != 2: 

                raise ValueError("tuple or list must be 2-valued, not \"%s\"" % (value)) 

            return self.AVA_type(value) 

        else: 

            raise TypeError("must be str,unicode,tuple, or AVA, got %s instead" % \ 

                            value.__class__.__name__) 

 

 

    def _avas_from_sequence(self, seq): 

        avas = [] 

 

        for item in seq: 

            ava = self._ava_from_value(item) 

            if isinstance(ava, list): 

                avas.extend(ava) 

            else: 

                avas.append(ava) 

        return avas 

 

    def _to_openldap(self): 

        return [[(ava.attr.encode('utf-8'), ava.value.encode('utf-8'), self.flags) for ava in self.avas]] 

 

    def __str__(self): 

        return dn2str(self._to_openldap()) 

 

    def __repr__(self): 

        return "%s.%s('%s')" % (self.__module__, self.__class__.__name__, self.__str__()) 

 

    def _next(self): 

        for ava in self.avas: 

            yield ava 

 

    def __iter__(self): 

        return self._next() 

 

    def __len__(self): 

        return len(self.avas) 

 

    def __getitem__(self, key): 

        if isinstance(key, (int, long, slice)): 

            return self.avas[key] 

        elif isinstance(key, basestring): 

            for ava in self.avas: 

                if key == ava.attr: 

                    return ava.value 

            raise KeyError("\"%s\" not found in %s" % (key, self.__str__())) 

        else: 

            raise TypeError("unsupported type for RDN indexing, must be int, basestring or slice; not %s" % \ 

                                (key.__class__.__name__)) 

 

    def _get_attr(self): 

        if len(self.avas) == 0: 

            raise IndexError("No AVA's in this RDN") 

        return self.avas[0].attr 

 

    def _set_attr(self, new_attr): 

        if len(self.avas) == 0: 

            raise IndexError("No AVA's in this RDN") 

 

        self.avas[0].attr = new_attr 

 

    attr  = property(_get_attr) 

 

    def _get_value(self): 

        if len(self.avas) == 0: 

            raise IndexError("No AVA's in this RDN") 

        return self.avas[0].value 

 

    def _set_value(self, new_value): 

        if len(self.avas) == 0: 

            raise IndexError("No AVA's in this RDN") 

 

        self.avas[0].value = new_value 

 

    value = property(_get_value) 

 

    def __hash__(self): 

        # Hash is computed from RDN's string representation because it's immutable 

        return hash(str(self)) 

 

    def __eq__(self, other): 

        # Try coercing string to RDN, if successful compare to coerced object 

        if isinstance(other, basestring): 

            try: 

                other_rdn = RDN(other) 

                return self.__eq__(other_rdn) 

            except Exception: 

                return False 

 

        # If it's not an RDN it can't be equal 

        if not isinstance(other, RDN): 

            return False 

 

        # Perform comparision between objects of same type 

        return self.avas == other.avas 

 

    def __ne__(self, other): 

        return not self.__eq__(other) 

 

    def __cmp__(self, other): 

        if not isinstance(other, RDN): 

            raise TypeError("expected RDN but got %s" % (other.__class__.__name__)) 

 

        result = cmp(len(self), len(other)) 

        if result != 0: 

            return result 

        i = 0 

        while i < len(self): 

            result = cmp(self[i], other[i]) 

            if result != 0: 

                return result 

            i += 1 

        return 0 

 

    def __add__(self, other): 

        result = self.__class__(self) 

        if isinstance(other, RDN): 

            for ava in other.avas: 

                result.avas.append(self.AVA_type(ava.attr, ava.value)) 

        elif isinstance(other, AVA): 

            result.avas.append(self.AVA_type(other.attr, other.value)) 

        elif isinstance(other, basestring): 

            rdn = self.__class__(other) 

            for ava in rdn.avas: 

                result.avas.append(self.AVA_type(ava.attr, ava.value)) 

        else: 

            raise TypeError("expected RDN, AVA or basestring but got %s" % (other.__class__.__name__)) 

 

        result.avas.sort() 

        return result 

 

class EditableRDN(RDN): 

    ''' 

    Exactly identical to the RDN class except 

 

    * Hash value is based on object identity, not object 

      value. Objects that test as equal will be non-unique when 

      used as a dict key or member of a set. 

 

    * AVA components may be assigned via assignment statements. 

 

    * In-place addition modifes the lhs object. 

 

    * The attr and value properties may be modified after object creation. 

    ''' 

 

    is_mutable = True 

    __hash__ = None 

    AVA_type = EditableAVA 

 

    def __setitem__(self, key, value): 

        if isinstance(key, (int, long)): 

            new_ava = self._ava_from_value(value) 

            if isinstance(new_ava, list): 

                raise TypeError("cannot assign multiple AVA's to single entry") 

            self.avas[key] = new_ava 

        elif isinstance(key, slice): 

            avas = self._avas_from_sequence(value) 

            self.avas[key] = avas 

        elif isinstance(key, basestring): 

            new_ava = self._ava_from_value(value) 

            if isinstance(new_ava, list): 

                raise TypeError("cannot assign multiple AVA's to single entry") 

            found = False 

            i = 0 

            while i < len(self.avas): 

                if key == self.avas[i].attr: 

                    found = True 

                    self.avas[i] = new_ava 

                    break 

                i += 1 

            if not found: 

                raise KeyError("\"%s\" not found in %s" % (key, self.__str__())) 

        else: 

            raise TypeError("unsupported type for RDN indexing, must be int, basestring or slice; not %s" % \ 

                                (key.__class__.__name__)) 

        self.avas.sort() 

 

    attr  = property(RDN._get_attr, RDN._set_attr) 

    value = property(RDN._get_value, RDN._set_value) 

 

 

    def __iadd__(self, other): 

        # If __iadd__ is not available Python will emulate += by 

        # replacing the lhs object with the result of __add__ (if available). 

        if isinstance(other, RDN): 

            for ava in other.avas: 

                self.avas.append(self.AVA_type(ava.attr, ava.value)) 

        elif isinstance(other, AVA): 

            self.avas.append(self.AVA_type(other.attr, other.value)) 

        elif isinstance(other, basestring): 

            rdn = self.__class__(other) 

            for ava in rdn.avas: 

                self.avas.append(self.AVA_type(ava.attr, ava.value)) 

        else: 

            raise TypeError("expected RDN, AVA or basestring but got %s" % (other.__class__.__name__)) 

 

        self.avas.sort() 

        return self 

 

class DN(object): 

    ''' 

    DN(arg0, ...) 

 

    A DN is a LDAP Distinguished Name. A DN is an ordered sequence of RDN's. 

 

    The DN constructor is passed a sequence of args and a set of 

    keyword parameters used for configuration. normalize means the 

    attr and value will be converted to lower case. 

 

    The constructor iterates through the sequence and adds the RDN's 

    it finds in order to the DN object. Each item in the sequence may 

    be: 

 

    * A 2-valued tuple or list. The first member is the attr and the 

      second member is the value of an RDN, both members must be 

      strings (or unicode). The tuple or list is passed to the RDN 

      constructor and the resulting RDN is appended to the 

      DN. Multiple tuples or lists may appear in the argument list, 

      each adds one additional RDN to the DN. 

 

    * A single string (or unicode) argument, in this case the string 

      will be interpretted using the DN syntax described in RFC 4514 

      to yield one or more RDN's which will be appended in order to 

      the DN. The parsing recognizes the DN syntax escaping rules. 

 

    * A RDN object, the RDN will copied respecting the constructors 

      keyword configuration parameters and appended in order. 

 

    * A DN object, the RDN's in the DN are copied respecting the 

      constructors keyword configuration parameters and appended in 

      order. 

 

    Single DN Examples: 

 

    DN(('cn', 'Bob'))                   # tuple yields 1 RDN 

    DN(['cn', 'Bob'])                   # list yields 1 RDN 

    DN('cn=Bob')                        # DN syntax with 1 RDN 

    DN(RDN('cn', 'Bob'))                # RDN object adds 1 RDN 

 

    Multiple RDN Examples: 

 

    DN(('cn', 'Bob'),('ou', 'people'))  # 2 tuples yields 2 RDN's 

                                        # 2 RDN's total 

    DN('cn=Bob,ou=people')              # DN syntax with 2 RDN's 

                                        # 2 RDN's total 

    DN(RDN('cn', 'Bob'),RDN('ou', 'people')) # 2 RDN objects 

                                        # 2 RDN's total 

    DN(('cn', 'Bob'), "ou=people')      # 1st tuple adds 1 RDN 

                                        # 2nd DN syntax string adds 1 RDN 

                                        # 2 RDN's total 

    base_dn = DN('dc=redhat,dc=com') 

    container_dn = DN('cn=sudorules,cn=sudo') 

    DN(('cn', 'Bob'), container_dn, base_dn) 

                                        # 1st arg adds 1 RDN, cn=Bob 

                                        # 2nd arg adds 2 RDN's, cn=sudorules,cn=sudo 

                                        # 3rd arg adds 2 RDN's, dc=redhat,dc=com 

                                        # 5 RDN's total 

 

 

    Note: The RHS of a slice assignment is interpreted exactly in the 

    same manner as the constructor argument list (see above examples). 

 

    DN objects support iteration over their RDN members. You can iterate all 

    RDN members via any Python iteration syntax. DN objects support full Python 

    indexing using bracket [] notation. Examples: 

 

    len(rdn)            # return the number of RDN's 

    rdn[0]              # indexing the first RDN 

    rdn['cn']           # index by RDN attr, returns RDN value 

    for ava in rdn:     # iterate over each RDN 

    rdn[:]              # a slice, in this case a copy of each RDN 

 

    WARNING: When indexing by attr (e.g. dn['cn']) there is a 

    possibility more than one RDN has the same attr name as the index 

    key. The default behavior is to return the value of the first RDN 

    whose attr matches the index key. If it's important the attr 

    belong to a specific RDN (e.g. the first) then this is the 

    suggested construct: 

 

        try: 

            cn = dn[0]['cn'] 

        except (IndexError, KeyError): 

            raise ValueError("dn '%s' missing expected cn as first attribute" % dn) 

 

    The IndexError catches a DN which does not have the expected 

    number of RDN's and the KeyError catches the case where the 

    indexed RDN does not have the expected attr. 

 

    DN object support slices. 

 

    # Get the first two RDN's using slices 

    dn[0:2] 

 

    # Get the last two RDN's using slices 

    dn[-2:] 

 

    # Get a list of all RDN's using slices 

    dn[:] 

 

    # Set the 2nd and 3rd RDN using slices (all are equivalent) 

    dn[1:3] = ('cn', 'Bob'), ('dc', 'redhat.com') 

    dn[1:3] = [['cn', 'Bob'], ['dc', 'redhat.com']] 

    dn[1:3] = RDN('cn', 'Bob'), RDN('dc', 'redhat.com') 

 

    DN objects support the insert operation. 

 

    dn.insert(i,x) is exactly equivalent to dn[i:i] = [x], thus the following 

    are all equivalent: 

 

    dn.insert(i, ('cn','Bob')) 

    dn.insert(i, ['cn','Bob']) 

    dn.insert(i, RDN(('cn','Bob'))) 

    dn[i:i] = [('cn','Bob')] 

 

    DN objects support equality testing and comparision. See RDN for the 

    definition of the comparision method. 

 

    DN objects implement startswith(), endswith() and the "in" membership 

    operator. You may pass a DN or RDN object to these. Examples: 

 

    # Test if dn ends with the contents of base_dn 

    if dn.endswith(base_dn): 

    # Test if dn starts with a rdn 

    if dn.startswith(rdn1): 

    # Test if a container is present in a dn 

    if container_dn in dn: 

 

    DN objects support concatenation and addition with other DN's or RDN's 

    or strings (interpreted as RFC 4514 DN syntax). 

 

    # yields a new DN object with the RDN's of dn2 appended to the RDN's of dn1 

    dn1 + dn2 

 

    # yields a new DN object with the rdn1 appended to the RDN's of dn1 

    dn1 + rdn1 

 

    DN objects can add RDN's objects via in-place addition. 

 

    dn1 += dn2  # dn2 RDN's are appended to the dn1's RDN's 

    dn1 += rdn1 # dn1 has rdn appended to its RDN's 

    dn1 += "dc=redhat.com" # string is converted to DN, then appended 

 

    The str method of an DN returns the string representation in RFC 4514 DN 

    syntax with proper escaping. 

    ''' 

 

    is_mutable = False 

    flags = 0 

    AVA_type = AVA 

    RDN_type = RDN 

 

    def __init__(self, *args, **kwds): 

        self.rdns = self._rdns_from_sequence(args) 

 

    def _rdn_from_value(self, value): 

        if isinstance(value, RDN): 

            return self.RDN_type(value) 

        elif isinstance(value, DN): 

            rdns = [] 

            for rdn in value.rdns: 

                rdns.append(self.RDN_type(rdn)) 

            if len(rdns) == 1: 

                return rdns[0] 

            else: 

                return rdns 

        elif isinstance(value, basestring): 

            rdns = [] 

            try: 

                dn_list = str2dn(value.encode('utf-8')) 

                for rdn_list in dn_list: 

                    avas = [] 

                    for ava_tuple in rdn_list: 

                        avas.append(self.AVA_type(ava_tuple[0], ava_tuple[1])) 

                    rdn = self.RDN_type(*avas) 

                    rdns.append(rdn) 

            except DECODING_ERROR: 

                raise ValueError("malformed RDN string = \"%s\"" % value) 

            if len(rdns) == 1: 

                return rdns[0] 

            else: 

                return rdns 

        elif isinstance(value, (tuple, list)): 

            if len(value) != 2: 

                raise ValueError("tuple or list must be 2-valued, not \"%s\"" % (value)) 

            rdn = self.RDN_type(value) 

            return rdn 

        else: 

            raise TypeError("must be str,unicode,tuple, or RDN, got %s instead" % \ 

                            value.__class__.__name__) 

 

    def _rdns_from_sequence(self, seq): 

        rdns = [] 

 

        for item in seq: 

            rdn = self._rdn_from_value(item) 

            if isinstance(rdn, list): 

                rdns.extend(rdn) 

            else: 

                rdns.append(rdn) 

        return rdns 

 

    def _to_openldap(self): 

        return [[(ava.attr.encode('utf-8'), ava.value.encode('utf-8'), self.flags) for ava in rdn] for rdn in self.rdns] 

 

    def __str__(self): 

        return dn2str(self._to_openldap()) 

 

    def __repr__(self): 

        return "%s.%s('%s')" % (self.__module__, self.__class__.__name__, self.__str__()) 

 

    def _next(self): 

        for rdn in self.rdns: 

            yield rdn 

 

    def __iter__(self): 

        return self._next() 

 

    def __len__(self): 

        return len(self.rdns) 

 

    def __getitem__(self, key): 

        if isinstance(key, (int, long, slice)): 

            return self.rdns[key] 

        elif isinstance(key, basestring): 

            for rdn in self.rdns: 

                if key == rdn.attr: 

                    return rdn.value 

            raise KeyError("\"%s\" not found in %s" % (key, self.__str__())) 

        else: 

            raise TypeError("unsupported type for DN indexing, must be int, basestring or slice; not %s" % \ 

                                (key.__class__.__name__)) 

 

    def __hash__(self): 

        # Hash is computed from DN's string representation because it's immutable 

        return hash(str(self)) 

 

    def __eq__(self, other): 

        # Try coercing string to DN, if successful compare to coerced object 

        if isinstance(other, basestring): 

            try: 

                other_dn = DN(other) 

                return self.__eq__(other_dn) 

            except Exception: 

                return False 

 

        # If it's not an DN it can't be equal 

        if not isinstance(other, DN): 

            return False 

 

        # Perform comparision between objects of same type 

        return self.rdns == other.rdns 

 

    def __ne__(self, other): 

        return not self.__eq__(other) 

 

    def __cmp__(self, other): 

        if not isinstance(other, DN): 

            raise TypeError("expected DN but got %s" % (other.__class__.__name__)) 

 

        result = cmp(len(self), len(other)) 

        if result != 0: 

            return result 

        return self._cmp_sequence(other, 0, len(self)) 

 

    def _cmp_sequence(self, pattern, self_start, pat_len): 

        self_idx = self_start 

        pat_idx = 0 

        while pat_idx < pat_len: 

            result = cmp(self[self_idx], pattern[pat_idx]) 

            if result != 0: 

                return result 

            self_idx += 1 

            pat_idx += 1 

        return 0 

 

    def __add__(self, other): 

        result = self.__class__(self) 

        if isinstance(other, DN): 

            for rdn in other.rdns: 

                result.rdns.append(self.RDN_type(rdn)) 

        elif isinstance(other, RDN): 

            result.rdns.append(self.RDN_type(other)) 

        elif isinstance(other, basestring): 

            dn = self.__class__(other) 

            for rdn in dn.rdns: 

                result.rdns.append(rdn) 

        else: 

            raise TypeError("expected DN, RDN or basestring but got %s" % (other.__class__.__name__)) 

 

        return result 

 

    # The implementation of startswith, endswith, tailmatch, adjust_indices 

    # was based on the Python's stringobject.c implementation 

 

    def startswith(self, prefix, start=0, end=sys.maxsize): 

        ''' 

        Return True if the dn starts with the specified prefix (either a DN or 

        RDN object), False otherwise.  With optional start, test dn beginning at 

        that position.  With optional end, stop comparing dn at that position. 

        prefix can also be a tuple of dn's or rdn's to try. 

        ''' 

        if isinstance(prefix, tuple): 

            for pat in prefix: 

                if self._tailmatch(pat, start, end, -1): 

                    return True 

            return False 

 

        return self._tailmatch(prefix, start, end, -1) 

 

    def endswith(self, suffix, start=0, end=sys.maxsize): 

        ''' 

        Return True if dn ends with the specified suffix (either a DN or RDN 

        object), False otherwise.  With optional start, test dn beginning at 

        that position.  With optional end, stop comparing dn at that position. 

        suffix can also be a tuple of dn's or rdn's to try. 

        ''' 

        if isinstance(suffix, tuple): 

            for pat in suffix: 

                if self._tailmatch(pat, start, end, +1): 

                    return True 

            return False 

 

        return self._tailmatch(suffix, start, end, +1) 

 

    def _tailmatch(self, pattern, start, end, direction): 

        ''' 

        Matches the end (direction >= 0) or start (direction < 0) of self 

        against pattern (either a DN or RDN), using the start and end 

        arguments. Returns 0 if not found and 1 if found. 

        ''' 

 

        if isinstance(pattern, DN): 

            pat_len = len(pattern) 

        elif isinstance(pattern, RDN): 

            pat_len = 1 

        else: 

            raise TypeError("expected DN or RDN but got %s" % (pattern.__class__.__name__)) 

 

        self_len = len(self) 

 

        start, end = _adjust_indices(start, end, self_len) 

 

        if direction < 0:       # starswith 

            if start+pat_len > self_len: 

                return 0 

        else:                   # endswith 

            if end-start < pat_len or start > self_len: 

                return 0 

 

            if end-pat_len >= start: 

                start = end - pat_len 

 

        if isinstance(pattern, DN): 

            if end-start >= pat_len: 

                return not self._cmp_sequence(pattern, start, pat_len) 

            return 0 

        else: 

            return self.rdns[start] == pattern 

 

    def __contains__(self, other): 

        'Return the outcome of the test other in self. Note the reversed operands.' 

 

        if isinstance(other, DN): 

            other_len = len(other) 

            end = len(self) - other_len 

            i = 0 

            while i <= end: 

                result = self._cmp_sequence(other, i, other_len) 

                if result == 0: 

                    return True 

                i += 1 

            return False 

 

        elif isinstance(other, RDN): 

            return other in self.rdns 

        else: 

            raise TypeError("expected DN or RDN but got %s" % (other.__class__.__name__)) 

 

 

    def find(self, pattern, start=None, end=None): 

        ''' 

        Return the lowest index in the DN where pattern DN (or RDN) is found, 

        such that pattern is contained in the range [start, end]. Optional 

        arguments start and end are interpreted as in slice notation. Return 

        -1 if pattern is not found. 

        ''' 

 

        if isinstance(pattern, DN): 

            pat_len = len(pattern) 

        elif isinstance(pattern, RDN): 

            pat_len = 1 

        else: 

            raise TypeError("expected DN or RDN but got %s" % (pattern.__class__.__name__)) 

 

        self_len = len(self) 

 

        if start is None: 

            start = 0 

        if end is None: 

            end = self_len 

 

        start, end = _adjust_indices(start, end, self_len) 

 

        i = start 

        stop = max(start, end - pat_len) 

        if isinstance(pattern, DN): 

            while i <= stop: 

                result = self._cmp_sequence(pattern, i, pat_len) 

                if result == 0: 

                    return i 

                i += 1 

            return -1 

        else: 

            while i <= stop: 

                if self.rdns[i] == pattern: 

                    return i 

                i += 1 

            return -1 

 

    def index(self, pattern, start=None, end=None): 

        ''' 

        Like find() but raise ValueError when the pattern is not found. 

        ''' 

 

        i = self.find(pattern, start, end) 

        if i == -1: 

            raise ValueError("pattern not found") 

        return i 

 

    def rfind(self, pattern, start=None, end=None): 

        ''' 

        Return the highest index in the DN where pattern DN (or RDN) is found, 

        such that pattern is contained in the range [start, end]. Optional 

        arguments start and end are interpreted as in slice notation. Return 

        -1 if pattern is not found. 

        ''' 

 

        if isinstance(pattern, DN): 

            pat_len = len(pattern) 

        elif isinstance(pattern, RDN): 

            pat_len = 1 

        else: 

            raise TypeError("expected DN or RDN but got %s" % (pattern.__class__.__name__)) 

 

        self_len = len(self) 

 

        if start is None: 

            start = 0 

        if end is None: 

            end = self_len 

 

        start, end = _adjust_indices(start, end, self_len) 

 

        i = max(start, min(end, self_len - pat_len)) 

        stop = start 

        if isinstance(pattern, DN): 

            while i >= stop: 

                result = self._cmp_sequence(pattern, i, pat_len) 

                if result == 0: 

                    return i 

                i -= 1 

            return -1 

        else: 

            while i >= stop: 

                if self.rdns[i] == pattern: 

                    return i 

                i -= 1 

            return -1 

 

    def rindex(self, pattern, start=None, end=None): 

        ''' 

        Like rfind() but raise ValueError when the pattern is not found. 

        ''' 

 

        i = self.rfind(pattern, start, end) 

        if i == -1: 

            raise ValueError("pattern not found") 

        return i 

 

class EditableDN(DN): 

    ''' 

    Exactly identical to the DN class except 

 

    * Hash value is based on object identity, not object 

      value. Objects that test as equal will be non-unique when 

      used as a dict key or member of a set. 

 

    * RDN components may be assigned via assignment statements. 

 

    * RDN components may be inserted. 

 

    * In-place addition modifes the lhs object. 

 

    ''' 

 

    is_mutable = True 

    __hash__ = None 

    AVA_type = EditableAVA 

    RDN_type = EditableRDN 

 

    def __setitem__(self, key, value): 

        if isinstance(key, (int, long)): 

            new_rdn = self._rdn_from_value(value) 

            if isinstance(new_rdn, list): 

                raise TypeError("cannot assign multiple RDN's to single entry") 

            self.rdns[key] = new_rdn 

        elif isinstance(key, slice): 

            rdns = self._rdns_from_sequence(value) 

            self.rdns[key] = rdns 

        elif isinstance(key, basestring): 

            new_rdn = self._rdn_from_value(value) 

            if isinstance(new_rdn, list): 

                raise TypeError("cannot assign multiple values to single entry") 

            found = False 

            i = 0 

            while i < len(self.rdns): 

                if key == self.rdns[i].attr: 

                    found = True 

                    self.rdns[i] = new_rdn 

                    break 

                i += 1 

            if not found: 

                raise KeyError("\"%s\" not found in %s" % (key, self.__str__())) 

        else: 

            raise TypeError("unsupported type for DN indexing, must be int, basestring or slice; not %s" % \ 

                                (key.__class__.__name__)) 

 

    def __iadd__(self, other): 

        # If __iadd__ is not available Python will emulate += by 

        # replacing the lhs object with the result of __add__ (if available). 

        if isinstance(other, DN): 

            for rdn in other.rdns: 

                self.rdns.append(self.RDN_type(rdn)) 

        elif isinstance(other, RDN): 

            self.rdns.append(self.RDN_type(other)) 

        elif isinstance(other, basestring): 

            dn = self.__class__(other) 

            self.__iadd__(dn) 

        else: 

            raise TypeError("expected DN, RDN or basestring but got %s" % (other.__class__.__name__)) 

 

        return self 

 

    def insert(self, i, x): 

        ''' 

        x must be a 2-value tuple or list promotable to an RDN object, 

        or a RDN object. 

 

        dn.insert(i, x) is the same as s[i:i] = [x] 

 

        When a negative index is passed as the first parameter to the 

        insert() method, the list length is added, as for slice 

        indices. If it is still negative, it is truncated to zero, as 

        for slice indices. 

        ''' 

 

        self.rdns.insert(i, self._rdn_from_value(x)) 

 

    def replace(self, old, new, count=sys.maxsize): 

        ''' 

        Replace all occurrences of old DN (or RDN) with new DN (or 

        RDN). If the optional argument count is given, only the first 

        count occurrences are replaced. 

 

        Returns the number of replacements made. 

        ''' 

 

        if not isinstance(old, (DN, RDN)): 

            raise TypeError("old must be DN or RDN but got %s" % (old.__class__.__name__)) 

        if not isinstance(new, (DN, RDN)): 

            raise TypeError("new must be DN or RDN but got %s" % (new.__class__.__name__)) 

 

 

        start = 0 

        pat_len = len(old) 

        n_replaced = 0 

        while n_replaced < count: 

            index = self.find(old, start) 

            if index < 0: 

                return n_replaced 

            self[index : index+pat_len] = new 

            n_replaced += 1 

            start = index + pat_len 

 

        return n_replaced